Estos serán los temas a tratar.
-Movimientos en el plano
-Transformaciones geométricas
-Mosaicos y fractales
Movimientos en el plano.
Hoy vamos a estudiar los movimientos en el plano los cuales vienen dados por transformaciones geométricas. Una transformación geométrica es una aplicación del plano en sí mismo que a cada punto del plano asocia otro punto, conservándose tanto la forma como el tamaño de la figura u objeto que se mueve en nuestro plano, es decir; se conservan tanto los ángulos como las distancias. Hay tres tipos de movimientos: la traslación, el giro y la simetría. Además también pueden existir movimientos que resulten de la combinación de los anteriores.
TRASLACIONES
Llamamos traslación
La traslación es un movimiento donde se conserva además la orientación. El punto A y el A´se dice que son homólogos.
SIMETRÍAS
-Simetría central: Como ya hemos mencionado, se trata de un giro de centro O y de ángulo 180º. También podemos decir que una simetría central de centro O es un movimiento en el plano que transforma un punto A en otro A´siendo O el punto medio del segmento AA´

-Simetría central: Como ya hemos mencionado, se trata de un giro de centro O y de ángulo 180º. También podemos decir que una simetría central de centro O es un movimiento en el plano que transforma un punto A en otro A´siendo O el punto medio del segmento AA´

Si componemos dos simetrías centrales con distinto centro, obtenemos una traslación.
-Simetría axial: Llamamos simetría axial de eje e a un transformación mediante la cual se le asocia a un punto del plano A otro punto A´, tal que el eje de simetría e es la mediatriz del segmento AA´, es decir; la distancia de A a la recta e es igual que la distancia del punto A´a la recta e: d(A,e)=d(A´,e).

-Simetría axial: Llamamos simetría axial de eje e a un transformación mediante la cual se le asocia a un punto del plano A otro punto A´, tal que el eje de simetría e es la mediatriz del segmento AA´, es decir; la distancia de A a la recta e es igual que la distancia del punto A´a la recta e: d(A,e)=d(A´,e).

Además, también se cumple, que la recta e será perpendicular al segmento que une A con A´.
Transformaciones geométricas.
Una transformación geométrica, o simplemente una transformación, es una aplicación que hace corresponder a cada punto del plano otro punto del plano. Como consecuencia, las figuras se transforman en otras figuras.
Las transformaciones más usuales son las traslaciones, rotaciones, simetrías y las homotecias. Todas ellas mantienen la forma de las figuras, pero pueden disminuir el tamaño y cambiar la figura de posición.
Mosaicos y fractales.
Mosaicos
Un mosaico es, matemáticamente y a grosso modo, el recubrimiento del plano mediante figuras, de tal forma que no se solapen ni queden huecos entre ellas. Las piezas que se utilizan reciben el nombre de teselas (o baldosas, losetas,…).
Existen muchas formas de obtener un mosaico. Los más sencillos están formados por polígonos regulares del mismo tipo (por ejemplo cuadrados, o hexágonos regulares, o triángulos equiláteros), pero también se pueden formar mosaicos combinando varios tipos de polígonos.
Si echamos la vista atrás, distintas culturas a lo largo de la historia han abordado la teselación por motivos de distinto tipo: intelectual en Grecia, decorativo en Roma, religioso en el mundo islámico,… En el mundo contemporáneo creo que el ejemplo más conocido es el del famoso artista holandés M. C. Escher, que dibujó sorprendentes figuras que encajaban entre sí formando bellos mosaicos. Llega a parecer realmente arte de magia cómo lagartos, caballeros o pájaros se acoplan a la perfección cubriendo armoniosamente el plano.
Fractales
Un fractal es un objeto geométrico cuya estructura básica, fragmentada o irregular, se repite a diferentes escalas.1 El término fue propuesto por el matemático Benoît Mandelbrot en 1975 y deriva del latín fractus, que significa quebrado o fracturado. Muchas estructuras naturales son de tipo fractal. La propiedad matemática clave de un objeto genuinamente fractal es que su dimensión métrica fractal es un número no entero.
Si bien el término "fractal" es reciente, los objetos hoy denominados fractales eran bien conocidos en matemáticas desde principios del siglo XX. Las maneras más comunes de determinar lo que hoy denominamos dimensión fractal fueron establecidas a principios del siglo XX en el seno de la teoria de la medida
No hay comentarios:
Publicar un comentario